SPOJ-MobileService--线性DP

题目链接

https://www.luogu.org/problemnew/show/SP703

方法一

分析

很显然可以用一个四维的状态$f[n][a][b][c]​$表示完成第i个任务时且三人位置在$a,b,c​$时的答案,枚举那个人到达下个位置来状态转移

然而,三人之必须有一个人在$pos[n]$,这个位置

于是我们就枚举前两人的位置$f[n][a][b]$,枚举下谁在$pos[n]$这个位置然后状态转移就好了

但是注意有一些约束条件不能忘记,比如当$a==b$或$a==pos[n+1]$,$b==pos[n+1]$时就可能不能转移

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cctype>
#define ll long long
#define ri register int
using std::min;
using std::max;
template <class T>inline void read(T &x){
x=0;int ne=0;char c;
while(!isdigit(c=getchar()))ne=c=='-';
x=c-48;
while(isdigit(c=getchar()))x=(x<<3)+(x<<1)+c-48;
x=ne?-x:x;return ;
}
const int inf=0x7fffffff-10005;
int f[1005][205][205],c[205][205],pos[2005];
int n,l;
int main(){
int T,ans=inf;
int p,x,y;
read(T);
while(T--){
ans=inf;
read(l),read(n);
for(ri i=1;i<=l;i++){
for(ri j=1;j<=l;j++)
{
read(c[i][j]);
for(ri k=0;k<=n;k++)f[k][i][j]=inf;
}
}
for(ri i=1;i<=n;i++)read(pos[i]);
f[0][1][2]=0;
pos[0]=3;
for(ri k=0;k<n;k++){
p=k+1;
x=pos[k],y=pos[p];
for(ri i=1;i<=l;i++){
for(ri j=1;j<=l;j++){
if(i==j)continue;/*约束条件不能忘记*/
if(i!=y&&j!=y)f[p][i][j]=min(f[p][i][j],f[k][i][j]+c[x][y]);
if(x!=y&&j!=y)f[p][x][j]=min(f[p][x][j],f[k][i][j]+c[i][y]);
if(x!=y&&i!=y)f[p][i][x]=min(f[p][i][x],f[k][i][j]+c[j][y]);
//if(p==n)ans=min(ans,min(f[n][i][j],min(f[n][i][x],f[n][x][j])));
}
}
}
for(ri i=1;i<=l;i++){
for(ri j=1;j<=l;j++)ans=min(ans,f[n][i][j]);
}
printf("%d\n",ans);
}
return 0;
}

方法二(方法一的优化)

分析

我们发现其实枚举第$i$个任务只和$i+1$这个状态有关,用滚动数组显著减少空间消耗

个人比较喜欢异或的,非常简洁,但是不要忘记即将更新的这一维状态要设为$INF$

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cctype>
#define ll long long
#define ri register int
using std::min;
using std::max;
template <class T>inline void read(T &x){
x=0;int ne=0;char c;
while(!isdigit(c=getchar()))ne=c=='-';
x=c-48;
while(isdigit(c=getchar()))x=(x<<3)+(x<<1)+c-48;
x=ne?-x:x;return ;
}
const int inf=0x3f3f3f3f;
int f[2][205][205],c[205][205],pos[2005];
int n,l;
int main(){
int T,ans=inf,t=0;
int p,x,y;
read(T);
while(T--){
ans=inf;
read(l),read(n);
for(ri i=1;i<=l;i++){
for(ri j=1;j<=l;j++)
read(c[i][j]);
}
for(ri i=1;i<=n;i++)read(pos[i]);
memset(f,0x3f,sizeof(f));
f[0][1][2]=0;
pos[0]=3;
for(ri k=0;k<n;k++){
t=t^1;memset(f[t],0x3f3f3f3f,sizeof(f[t]));
p=k+1;
x=pos[k],y=pos[p];
for(ri i=1;i<=l;i++){
for(ri j=1;j<=l;j++){
if(i==j)continue;
if(i!=y&&j!=y)f[t][i][j]=min(f[t][i][j],f[t^1][i][j]+c[x][y]);
if(x!=y&&j!=y)f[t][x][j]=min(f[t][x][j],f[t^1][i][j]+c[i][y]);
if(x!=y&&i!=y)f[t][i][x]=min(f[t][i][x],f[t^1][i][j]+c[j][y]);
//if(p==n)ans=min(ans,min(f[n][i][j],min(f[n][i][x],f[n][x][j])));
}
}
}
for(ri i=1;i<=l;i++){
for(ri j=1;j<=l;j++)
if(i!=j&&i!=pos[n]&&j!=pos[n])ans=min(ans,f[t][i][j]);
}
printf("%d\n",ans);
}
return 0;
}